Modern deep neural networks have achieved superhuman performance in tasks from image classification to game play. Surprisingly, these various complex systems with massive amounts of parameters exhibit the same remarkable structural properties in their last-layer features and classifiers across canonical datasets. This phenomenon is known as "Neural Collapse," and it was discovered empirically by Papyan et al. \cite{Papyan20}. Recent papers have theoretically shown the global solutions to the training network problem under a simplified "unconstrained feature model" exhibiting this phenomenon. We take a step further and prove the Neural Collapse occurrence for deep linear network for the popular mean squared error (MSE) and cross entropy (CE) loss. Furthermore, we extend our research to imbalanced data for MSE loss and present the first geometric analysis for Neural Collapse under this setting.
translated by 谷歌翻译
无数据知识蒸馏(DFKD)最近引起了人们的关注,这要归功于其在不使用培训数据的情况下将知识从教师网络转移到学生网络的吸引力。主要思想是使用发电机合成数据以培训学生。随着发电机的更新,合成数据的分布将发生变化。如果发电机和学生接受对手的训练,使学生忘记了先前一步获得的知识,则这种分配转换可能会很大。为了减轻这个问题,我们提出了一种简单而有效的方法,称为动量对抗蒸馏(MAD),该方法维持了发电机的指数移动平均值(EMA)副本,并使用发电机和EMA生成器的合成样品来培训学生。由于EMA发电机可以被视为发电机旧版本的合奏,并且与发电机相比,更新的更改通常会发生较小的变化,因此对其合成样本进行培训可以帮助学生回顾过去的知识,并防止学生适应太快的速度发电机的新更新。我们在六个基准数据集上进行的实验,包括ImageNet和Place365,表明MAD的性能优于竞争方法来处理大型分配转移问题。我们的方法还与现有的DFKD方法相比,甚至在某些情况下达到了最新的方法。
translated by 谷歌翻译
可解释的机器学习提供了有关哪些因素推动了黑盒系统的一定预测以及是否信任高风险决策或大规模部署的洞察力。现有方法主要集中于选择解释性输入功能,这些功能遵循本地添加剂或实例方法。加性模型使用启发式采样扰动来依次学习实例特定解释器。因此,该过程效率低下,并且容易受到条件较差的样品的影响。同时,实例技术直接学习本地采样分布,并可以从其他输入中利用全球信息。但是,由于严格依赖预定义的功能,他们只能解释单一级预测并在不同设置上遇到不一致的情况。这项工作利用了这两种方法的优势,并提出了一个全球框架,用于同时学习多个目标类别的本地解释。我们还提出了一种自适应推理策略,以确定特定实例的最佳功能数量。我们的模型解释器极大地超过了忠诚的添加和实例的对应物,而在各种数据集和Black-box模型体系结构上获得了高水平的简洁性。
translated by 谷歌翻译
特洛伊木马对深度神经网络的攻击既危险又秘密。在过去的几年中,特洛伊木马的攻击从仅使用单个输入 - 不知不线的触发器和仅针对一个类别使用多个输入特异性触发器和定位多个类的类别。但是,特洛伊木马的防御尚未赶上这一发展。大多数防御方法仍然使对特洛伊木马触发器和目标类别的假设不足,因此,现代特洛伊木马的攻击很容易被规避。为了解决这个问题,我们提出了两种新颖的“过滤”防御措施,称为变分输入过滤(VIF)和对抗输入过滤(AIF),它们分别利用有损数据压缩和对抗性学习,以有效地纯化潜在的Trojan触发器,而无需在运行时间内触发潜在的Trojan触发器。对触发器/目标类的数量或触发器的输入依赖性属性做出假设。此外,我们还引入了一种称为“过滤 - 对抗性”(FTC)的新防御机制,该机制有助于避免通过“过滤”引起的清洁数据的分类准确性下降,并将其与VIF/AIF结合起来,从种类。广泛的实验结果和消融研究表明,我们提议的防御能力在减轻五次高级特洛伊木马攻击方面显着优于众所周知的基线防御能力,包括最近的两次最新一次,同时对少量训练数据和大型触发器非常强大。
translated by 谷歌翻译
在过去的几十年中,由于其在广泛的应用中,现场文本认可从学术界和实际用户获得了全世界的关注。尽管在光学字符识别方面取得了成就,但由于诸如扭曲或不规则布局等固有问题,现场文本识别仍然具有挑战性。大多数现有方法主要利用基于复发或卷积的神经网络。然而,虽然经常性的神经网络(RNN)通常由于顺序计算而遭受慢的训练速度,并且遇到消失的梯度或瓶颈,但CNN在复杂性和性能之间衡量折衷。在本文中,我们介绍了SAFL,一种基于自我关注的神经网络模型,具有场景文本识别的焦点损失,克服现有方法的限制。使用焦损而不是负值对数似然有助于模型更多地关注低频样本训练。此外,为应对扭曲和不规则文本,我们在传递到识别网络之前,我们利用空间变换(STN)来纠正文本。我们执行实验以比较拟议模型的性能与七个基准。数值结果表明,我们的模型实现了最佳性能。
translated by 谷歌翻译
域适应(DA)从严格的理论作品中获益,研究其富有识别特征和各个方面,例如学习领域 - 不变的表示及其权衡。然而,由于多个源域的参与和训练期间目标域的潜在不可用的域,因此似乎不是这种源DA和域泛化(DG)设置的情况非常复杂和复杂。在本文中,我们为目标一般损失开发了新的上限,吸引我们来定义两种域名不变的表示。我们进一步研究了利弊以及执行学习每个领域不变的表示的权衡。最后,我们进行实验检查这些陈述的权衡,以便在实践中提供有关如何使用它们的实践提示,并探索我们发达理论的其他有趣性质。
translated by 谷歌翻译
通过回顾一封来自情节记忆的过去的经验,可以通过回忆过去的经验来实现钢筋学习的样本效率。我们提出了一种新的基于模型的轨迹的集体记忆,解决了集体控制的当前限制。我们的记忆估计轨迹值,指导代理人朝着良好的政策。基于内存构建,我们通过动态混合控制统一模型的基于动态和习惯学习来构建互补学习模型,进入单个架构。实验表明,我们的模型可以比各种环境中的其他强力加强学习代理更快,更好地学习,包括随机和非马尔可夫环境。
translated by 谷歌翻译
Q学习目标的乐观性质导致高度估计偏差,这是与标准$ Q-$学习相关的固有问题。这种偏差未能考虑低返回的可能性,特别是在风险方案中。然而,偏差的存在,无论是高估还是低估,不一定都不需要不可取。在本文中,我们分析了偏见学习的效用,并表明具体类型的偏差可能是优选的,这取决于场景。基于这一发现,我们设计了一种新颖的加强学习算法,平衡Q学习,其中将目标被修改为悲观和乐观术语的凸起组合,其相关权重分析地确定在线确定。我们在表格设置中证明了该算法的收敛,并经验证明了其在各种环境中的优越学习性能。
translated by 谷歌翻译
进程感知的推荐系统可以提供关键的决策支持功能,以帮助通过推荐接下来采取的操作来执行业务流程执行。基于深度学习领域的最近进步,我们介绍了一种基于新的内存增强神经网络(MANN)构建过程感知推荐系统。我们提出了一种新颖的网络架构,即写保护的双控制器存储器增强神经网络(DCW-MANN),用于构建规范模型。为了评估我们方法的可行性和有用性,我们考虑了三个现实世界数据集,并表明我们的方法在后缀推荐和下一个任务预测任务的几个基线上导致更好的性能。
translated by 谷歌翻译
In this paper, we propose a novel technique, namely INVALIDATOR, to automatically assess the correctness of APR-generated patches via semantic and syntactic reasoning. INVALIDATOR reasons about program semantic via program invariants while it also captures program syntax via language semantic learned from large code corpus using the pre-trained language model. Given a buggy program and the developer-patched program, INVALIDATOR infers likely invariants on both programs. Then, INVALIDATOR determines that a APR-generated patch overfits if: (1) it violates correct specifications or (2) maintains errors behaviors of the original buggy program. In case our approach fails to determine an overfitting patch based on invariants, INVALIDATOR utilizes a trained model from labeled patches to assess patch correctness based on program syntax. The benefit of INVALIDATOR is three-fold. First, INVALIDATOR is able to leverage both semantic and syntactic reasoning to enhance its discriminant capability. Second, INVALIDATOR does not require new test cases to be generated but instead only relies on the current test suite and uses invariant inference to generalize the behaviors of a program. Third, INVALIDATOR is fully automated. We have conducted our experiments on a dataset of 885 patches generated on real-world programs in Defects4J. Experiment results show that INVALIDATOR correctly classified 79% overfitting patches, accounting for 23% more overfitting patches being detected by the best baseline. INVALIDATOR also substantially outperforms the best baselines by 14% and 19% in terms of Accuracy and F-Measure, respectively.
translated by 谷歌翻译